Nonlinear fractional differential equations with $m$-point integral boundary conditions
نویسندگان
چکیده
منابع مشابه
Nonlinear fractional differential equations with integral boundary value conditions
and Applied Analysis 3 Lemma 2.5. Let α > 0 then
متن کاملBoundary value problems for nonlinear fractional differential equations with integral and ordinary-fractional flux boundary conditions
In this paper, we consider a new class of boundary value problems of Caputo type fractional differential equations supplemented with classical/nonlocal Riemann-Liouville integral and flux boundary conditions and obtain some existence results for the given problems. The flux boundary condition x′(0) = b cDβx(1) states that the ordinary flux x′(0) at the left-end point of the interval [0, 1] is p...
متن کاملNew Existence Results for Nonlinear Fractional Differential Equations with Three-Point Integral Boundary Conditions
This paper studies a boundary value problem of nonlinear fractional differential equations of order q ∈ 1, 2 with three-point integral boundary conditions. Some new existence and uniqueness results are obtained by using standard fixed point theorems and Leray-Schauder degree theory. Our results are new in the sense that the nonlocal parameter in three-point integral boundary conditions appears ...
متن کاملBoundary Value Problems for Nonlinear Fractional Differential Equations and Inclusions with Nonlocal and Integral Boundary Conditions
In this paper, we study a class of boundary value problems of nonlinear fractional differential equations and inclusions with nonlocal and integral boundary conditions. Some new existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples are given to illustrate the results.
متن کاملThe existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions
In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Differential Calculus
سال: 2019
ISSN: 1847-9677
DOI: 10.7153/fdc-2019-09-05